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WHY NEURAL OPERATORS CONTINVUITI

Direct Mapping _Bgt_ween Function Spaces Physics lnfu_rmed ; ; : . Continuiti 1s an open-source Python package for learning function

e Enhanced Flexibility: Neural operators map e Seamless integration of physical constraints. T _ _
inputs to outputs as functions, offering a e Partial differential equations are naturally operators, emphasizing elegance and generality. It is based on the PyTorch
flexible framework 1deal for problems expressed using functions. framework, boosting familiarity and computational efficiency. The package
expressed naturally 2 f”mfm,}"*" includes physics-informed loss functions and benchmarks for operator

e Reduced Complexity: Avoids the need to _
discretize function spaces, simplifying model learning tasks.
formulation and reducing computational Wide Range of Applications
complexity.

e Offers high flexibility and faster (even real-

. 1 L - i - o - L
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: “ 1des ; : enchmarks :
accuracy. e Provides robust performance across varied Implementations Tntecface I o5 Binctions
problems and datasets.

e Scalable: Effectively handles high-

Discretization Independent dimensional data and complex functions.
e The discretization of input and output e Applicable in fields such as fluid dynamics,
functions can differ between samples. acoustics, structural mechanics, heat
e Neural operators can evaluate outputs at transter, tomography, plasma physics, Easy and Fast Problem Agnostic
arbitrarily many points, in any location. material design, seismology, optical systems, Implementation Neural Operators Plug and Play

and many more.

PROBLEM DESCRIPTION

ARCHITECTURES

4:-Xx—>1u e Neural operators are designed to learn ] S
mappings between infinite-dimensional DEE_pONEt [1]: : _ Other Implementations:
function spaces rather than finite- 5 E‘rStSE”rﬂLﬂpmﬁamr lrlnplemerlltatlgn. e Neural Operator [4]
; dimensional vectorspaces. e Based on the universal approximation 5
Function A e This approach a]lmwsp to efficiently theorem for operators by Chen et al. [2]. IR (E_;HSIS At N NG et )| B
Space(s) ‘1 approximate solutions to partial e Convolutional Neural Operator [6]
differential equations and other e Deep Neural Operator
> ® The resulting output function can be o A h :
evaluated at arbitrarily many points, — e Attention based models (GNOT [7],
providing a flexible and powerful G(u)(y) Zijie et al. [8])
Vector solution to the problem. Y —=|  Trunk e ... more to come :)
Space(s
BEEY In Continuiti:
e The operator mapping is defined with:

learn the solution operator in the =~ e

> | i —» Fourier layer 1 Fourier layer 2|— @ ® @ —»Fourier |El}’t‘1'T
>>> dno = DeepNeuralOperator() Fourier Neural Operator [3]:
e The problem is described by the mapping: >>> v =dno(x, u, y) e Utilizes Fourier transforms to

G: A—-U e Neural operator implementations can frequency domain.
e The neural operator approximates the mapping: 2oty et il e The fast Fourier transform allows
e Straightforward worktlow through for efficient implementations.
G =Gy generalized datasets.

Operator output

1.0 Superresolution e The operator maps the low-resolution data to
EX AM PLE S e FLAME dataset: A set of flow samples of a cnntix}u:::us function. '
0.8 resolution 32x32 that should be upsampled to ® The trained operator can accurately predict the
a0 128x128 | mapped function on a fine mesh, it achieved
B e The dataset is available on Kaggle. super-resolution.
0
| R {Ti(@)] Acoustic Boundary =
0.5- S Materials | | 02 1“ Low resolution Operator output Ground truth
: e Pulsating acoustic e The Helmholtz equation
0.6 sphere in the center describes the behavior of 1 s e ey s - - —
excites the domain. the pressure field. ' il =
0.4 e Boundaries have ® The physics-informed
parameterized neural operator uses the improved
0.2 (function) properties. PDE residual to guide the solution
e Frequency from 400 training.
= G h Hz to 500 Hz. Squared Resiudal Squared Resiudal
. sl . (without PT) (with PI)
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